%

Kod Integrations

LLC

Arcus Technology DMX Series Steppers and LabVIEW

An Introduction to DMX Series Stepper Motor Automation With LabVIEW
Application Note 001

Kod Integrations, LLC

http://www.kodintegrations.com/solutions/labview/stepper

1. Introduction

Arcus Technology, in conjunction with Kod Integrations, LLC recently added to its suite of stepper motor
software tools a fully functional LabVIEW driver. This application note is designed to facilitate even the
novice LabVIEW developer in swiftly creating their own functional LabVIEW applications utilizing this
driver and a set of (3) DMX-J-SA-17 stepper motors.

Please note that this document is not intended to act as a lesson in proper LabVIEW development
techniques, nor does it focus on one design pattern over another. Its intent is to demonstrate the usage of
the Arcus supplied LabVIEW driver for controlling DMX-]-SA-17 stepper motor(s) via simple, clean and
functional examples.

2. The Basics

Before one can begin developing their own custom application, an fgre =
understanding of the fundamental LabVIEW driver components is = [01X]
. . 4 | Q search | hot
necessary. Assuming the driver has been downloaded and properly
installed to the LabVIEW development environment, the top-level of the e bord
Arcus custom palette of VI's looks as seen in Figure 1.0, Top Level e e S, O
Custom Palette. = Baeer
ARCUS ARCUS]
Utility Setters SendfReceive... Utility Getters
The three primary LabVIEW VI’s to be discussed here are “Create T
: » o« : ” « : ” L
Connection”, “Send/Receive Command” and “Close Connection”. Main Functions Device Selecti... Select a VL...
2.1 Creating a Connection Figure 1, Top Level Custom Palette

Before any standard communications can be established with an USB-connected DMX device, a
connection reference must first be established. This is where the create_connection.vi comes in:

Create Connection
[create_connection.vi]

device_index (def=0) reference

error in (no error) error out

Clear_buffer? ('r) ,,,,,,,,,,,,,,,,,,,

Figure 2, Create Connection

%

Kod Integrations

LLC

device_index (def=0) An attached device is identified by its index. For example, if a single motor is physically
connected to the controlling computer, its index is by default ‘0’. If more than one
device is connected, the index of each additional device is incremented by 1; device 1 is
atindex 0, device 2 is at index 1, device n is at index n-1 and so forth.

clear_buffer? (T) In the event a motor session was improperly terminated (i.e. PC power loss), the
‘clear_buffer’ option is designed to reset that connection, allowing a newly refreshed

connection to be established. This, by default, is set to TRUE.

reference Once a motor has been properly initialized (a connection has been properly
established), a reference is generated identifying this specific motor’s connection.

2.2 Send/Receive Command

Perhaps the heart of the driver is the Send /Receive Command VI designed to communicate the
commands defined in Arcus Technology ASCII Language Specification for the DMX Series devices:

Send/Receive Command
[send_receive_command.vi]

reference (in)
command

reference (dup)
" ;L read_string
params (opt) “e success?
command (raw) : write_string
error in (no error) error out
echo errors? (T)

20
CM

gy
o

M=
R

Figure 3, Send/Receive Command

reference (in) A required input, this is the motor reference generated via the Create Connection
described above.

command (raw) The raw ASCII command as defined in the Arcus Technology ASCII Language
Specification for the DMX Series devices. If this input is non-null (not empty), it
becomes the overriding ‘command input’ to this VI. Meaning, any values wired to inputs
command and params (opt) are disregarded. See below for a more detailed description
of these two inputs.

command This is an alternative approach to sending the desired command to the referenced
motor. Itis nothing more than a pre-defined, strict-type def enumerated constant
providing the developer with a more human-readable set of commands. Behind the
scenes, each value in the enumerated constant simply gets mapped to the
corresponding ASCII command.

params (opt) Some ASCII commands take as input required parameter(s) for commanding the
motor(s). Those parameters are broken out into an optional array of type String and is
only used in conjunction with the command input and not the command (raw) input as

%

Kod Integrations

LLC

the command (raw) input will already have these parameters factored into the
command string.

NOTE: [t is recommended the developer first become acquainted with the ASCII command set
in the DMX motor documentation and then, once comfortable, begin using the
command/params(opt) inputs for ease of development.

echo errors? (T) By default, the “echo errors?” input is TRUE. That said, if an error is encountered while
attempting to send the desired command, a dialog box will pop up stating what the
error is. Regardless of whether this is input is TRUE or not, the error is always
transmitted out the “error out” cluster.

reference (dup) This is the duplicated input reference passed back out
read string This is the motor response after sending the command. The response could be a simple

OK, acknowledging successful receipt of a command or it could provide a response to a
motor query such as the programmed acceleration value.

success? Returns TRUE if the command/query was successful. Returns FALSE if an error was
encountered.
write string this is nothing more than the ASCII equivalent to the input command. Regardless of

which command approach is taken (using command (raw) or command w/params), the
ASCII equivalent can be retrieved here.

2.3 Close the Connection
Once communication with the attached motor is complete, the reference must be properly closed.

Close Connection
[close_connection.vi]

reference

error in (no error) error out

Figure 4, Close Connection

reference (in) A required input, this is the motor reference generated via the Create Connection (and
required for further communications) as described above.

Single DMX Series Communication

With a firm understanding of the primary driver components required to establish communication
with the DMX series stepper, the following steps to building a simple LabVIEW application will be
much more intuitive.

2

Kod Integrations

LLC

Have a look at the following front panel and block diagram for the VI
“01_issue_raw_command_string.vi”:

Front Panel:

Figure 5, 01_issue_raw_command_string.vi front panel

2
Kod Integrations

LLC

Block Diagram:

command (raw) [ZE<# response (raw)

device_index (def=0) [0}

error in (no error) E‘-f E‘% error out
[(1) Motor Initialization| [(2) Issue Raw Command)| [3) Motor Termination|

(1) Motor Initialization

In order to establish communication with an attached DMX series motor, that motor must FIRST be initialized, resulting in a
numeric ‘reference’ being generated that is used to uniquely identify that motor and ONLY that motor. The Device Index defaults
to "0" - which is the correct value if only one DMX device is currently connected to the controlling PC. This input becomes more
relevant when dealing with multiple attached devices.

(2) Issue Raw Command

Once an active reference has been established for the DMX series motor, one can begin active communication with the motor.
The driver offers a number of options for communications; this example demonstrates the use of issuing a direct (raw) ASCI
command as outlined in the ASCII Language Specification section of the DMX reference manual supplied by Arcus
Technologies.

Examples of some raw commands might be DN to retrieve the motor ID or EO=1 to enable the motor output.

(3) Motor Termination

This actively terminates the connection reference made to the motor. If this the reference to the active device has not been
properly terminated, errors will likely occur if re-initialization is attempted (possibly requiring a full power cycle on the device
itself). It is a wise idea to ensure any applications are capable of terminating all active references appropriately.

Figure 6, 01_issue_raw_command_string.vi block diagram

As demonstrated here, all three main components individually described in Section 2 above are wired
to form a single, simple application for communicating with a single DMX series stepper motor.

Note that because this is a single-motor application, the “device_index” input will always be ‘0’. The
value of this input becomes more important when dealing with multiple connected devices (described
in subsequent sections).

To see how this VI works, simply go to the “dmx_applications.lvproj” project and launch the VI
“01_issue_raw_command_string.vi” beneath the “single_unit” folder:

2

Kod Integrations

LLC

File Edit View Project Operate Tools Window Help

b xR OX[[ERIER-*][4

Items I Files

=- k) Project: dmx_applications.lvproj
& B My Computer
@ @ multiple_units
Bﬁ single_unit

. 0L e . command stingai

: @, 02_issue_command_with_parameters.vi
@. 03_issue_commands_on_demand.vi
Qg’ Dependencies

'é Build Specifications

Figure 7, Project View

Enter a command in the “command (raw)” field and RUN the VI. For example, enter the command
“DN” (without the quotes) and RUN the VI. The motor ID is returned.

Although this VI demonstrates the full functionality of initializing the motor, issuing a command and
closing that reference, doing this each time to send multiple commands is inefficient and unrealistic.
Have a look at the following front panel and diagram:

LLC

2

Kod Integrations

Front Panel:

7o‘nl>'NllN

'thrfsquﬁzddtxpnrenmion

[1
m

|

]

}

1

]

ional parameters) to perform the same function.

tor Control -

stepper

}

the ASCIT
pti

1
M

]

o

commands (and o

e

5

)

|

tlie,DtilnXséri'es

|
1

pre-defin

1

:OIITII

o s

2: make use of the supplied,

R

EXIT PROGRAM

L

P e et e Pt e Pt o e e P e (e P e [t e et o e P e P [e [t e S e e [e R Pt P e Pt o ot e P e i e e e e e P e et e et e et it et o ot

n_demand.vi front panel

ds_o

e_comman

3_issu

80

Figure

2

Kod Integrations

LLC

Block Diagram:

[[0] "issue_cmd": Value Change vpf——

=

command

parameters (opt) motor_response (raw)
CtIRef
OldVal

command (raw)

issue_cmd

.........

(1) Motor Initialization

|(2) Commands on Demand|

Tab Control m

(1) Motor Initialization

In order to establish communication with an attached DMX series motor, that motor must FIRST be initialized, resulting in a numeric 'reference’ being
generated that is used to uniquely identify that motor and ONLY that motor. The Device Index defaults to "0" - which is the correct value if only one
DMX device is currently connected to the controlling PC. This input becomes more relevant when dealing with multiple attached devices.

(2) Commands On Demand

Contrary to previous examples where only one command would execute in a single session (where a session is defined by (1) motor initialization, (2)
motor command(s) issued and (3) motor termination), this example enters a WHILE loop with a contained Event Structure. This model permits the user
to issue commands 'on demand' by entering the desired command on the front panel and clicking "ISSUE COMMAND" to send said command to the
initialized DMX device.

As seen in the above code snippet, clicking the "ISSUE COMMAND" button invokes the "issue_cmd” case (triggered by a Value Change event on the
"issue_cmd"” button control). Similarly, clicking the EXIT button invokes the "exit" case (triggered by a Value Change event on the "exit" button control).

Please refer to the instructions on the Front Panel that detail the usage of all three input controls wired to the send_receive_cmd.vi.

(3) Motor Termination

This actively terminates the connection reference made to the motor. If this the reference to the active device has not been properly terminated, errors
will likely occur if re-initialization is attempted (possibly requiring a full power cycle on the device itself). It is a wise idea to ensure any applications are
capable of terminating all active references appropriately.

Figure 9, 03_issue_commands_on_demand.vi block diagram

In this particular example, when the VI is executed, the attached motor at index 0 (remember, by
default) is initialized and the VI sits and waits for the User to (1) enter a command to be issued and
(2) click the “ISSUE COMMAND” button to send that command. This allows the User to send multiple
commands in a single session without the need to initialize the motor (create a reference) and
terminate that motor session (closing the reference) each time a command is issued. Ultimately,
when the User is finished with communications, he/she clicks the “EXIT PROGRAM” button to exit the
“commands on demand” while loop above and closing the motor reference.

%

Kod Integrations

To see how this VI works:

1. go to the “dmx_applications.lvproj” project and launch the VI
“03_issue_commands_on_demand.vi” beneath the “single_unit” folder.

2. RUN the VI

3. Enter a command in the “command (raw)” (beneath the Option 1 tab)

4. Click the “ISSUE COMMAND” button

Note the VI continues to run, waiting for the User to issue another command (or until the User clicks
the “EXIT PROGRAM” button). So to best demonstrate the advantage to this design approach, one
might want to issue a number of commands in a single session: get the device ID, enable the motor
output, jog the motor in the positive direction, stop motor movement and disable motor output:
1. GetID: Enter DN in “command (raw)” field, click ISSUE COMMAND
a. Note the output “Motor Response” might read J[SA00
2. Enable Output: Enter EO=1 in “command (raw)” field, click ISSUE COMMAND
a. Note the output reads “OK”
3. Jog: Enter J+ in the “command (raw)” field, click ISSUE COMMAND
a. Note the motor begins rotating
b. Note the output reads “OK”
4. Stop: Enter STOP in the “command (raw)” field, click ISSUE COMMAND
a. Note the motor stops rotating
b. Note the output reads “OK”
5. Disable Output: Enter EO=0 in the “command (raw)” field, click ISSUE COMMAND
a. Note the output reads “OK”

Note this VI presents an alternative approach to issuing these same commands. On the front panel,
click the “OPTION 2” tab to reveal two fields “Pre-defined Command” and “Parameters”. Rather than
recalling, for example, what the ASCII command may be for retrieving the motor ID one has the option
to choose the command from a human-readable drop down list. Revisiting the same sequence of
commands:

1. GetID: select “get device id” from the “Pre-defined Command” enumerated control list, click

ISSUE COMMAND

2. Enable Output: select “power up” from the “Pre-defined Command” enumerated control list,
click ISSUE COMMAND

3. Jog: select “constant jog(+)” from the “Pre-defined Command” enumerated control list, click
ISSUE COMMAND

4. Stop: select “stop slow” from the “Pre-defined Command” enumerated control list, click ISSUE
COMMAND

5. Disable Output: select “power down” from the “Pre-defined Command” enumerated control
list, click ISSUE COMMAND

P
&
Kod Integrations

LLC

The “Parameters (where applicable)” field isn’t required for these commands. An example of where
one might make use of the parameters array control is if a command requires some additional
parameters for proper execution. Setting the device ID is an example.

The ASCII command for setting device ID is DN=<dev_id> where <dev_id> is any ID with names JSA00
through JSA99 (pulled directly from the ASCII Language Specification). The parameter (just one) in
this case would be the desired device ID (i.e. JSA99). So to set the ID using the OPTION 2 command

method, the “Pre-defined Command” would be “set device id” and the one parameter would be J[SA99.

. Multiple DMX Series Communication
Many applications may require more than one DMX series motor to be controlled at one time. This
section, as with the previous section, covers two example applications demonstrating the use of the

Arcus LabVIEW driver but to control (3) DMX series stepper motors as opposed to (1).

Having a look at the front panel and block diagram of another VI (in the same project) named
“01_issue_raw_command_string (multi).vi”:

10

2

Kod Integrations

LLC

Front Panel

Figure 10, 01_issue_raw_command_string (multi).vi front panel

11

2

Kod Integrations

LLC

Block Diagram

command (raw) [motor at index O]@
command (raw) [motor at index 1]@
command (raw) [motor at index 2]@

device_indexes

H_JpLL]

error in (no error)

| True 't

B

N N 6] LT N
®
L o 20 @
N 'J E‘;NDE CLOSE
I~} = A4 v A foocx!
(1) Motor Initialization |(2) Issue Raw Commands| (3) Motor Termination
n - n - [l -

(1) Motor Initialization

In order to establish communication with an attached DMX series motor, that motor must FIRST be initialized, resulting in a numeric
'reference’ being generated that is used to uniquely identify that motor and ONLY that motor. In this case, (3) DMX series motors are
initialized, each at indexes 0, 1 and 2 respectively. Contained in its own For Loop, this demonstrates the ability to output each motor's
reference in an array of references. One might include this in an "initialize” case of a State Machine.

(2) Issue Raw Commands

Once active references have been established for the DMX series motors, one can begin active communication with each in whichever
manner deems appropriate for the application at hand. The driver offers a number of options for communications; this example
demonstrates the use of issuing a direct (raw) ASCIl commands as outlined in the ASCII Language Specification section of the DMX
reference manual supplied by Arcus Technologies.

The above example demonstrates two methods for simultanous communication with the initialized, referenced motors. The first (when the
wired boolean to the above Case Structure is False), demonstrates virtually simultaneous communications with all three motors. The second
(when the wired boolean to the above Case Structure is True), demonstrates sequential communications with an imposed 500ms loop delay.

(3) Motor Termination
This actively terminates the connection references made to each motor. If this the reference to the active devices have not been properly
terminated, errors will likely occur if re-initialization is attempted (possibly requiring a full power cycle on the device itself). It is a wise idea

to ensure any applications are capable of terminating all active references appropriately.

Figure 11, 01_issue_raw_command_string (multi).vi block diagram
(sequential commands)

error out
=

J] response (raw) [motor at index 0]
response (raw) [motor at index 1]

response (raw) [motor at index 2]

Analogous in behavior to the first example discussed in Section 3, this VI demonstrates usage of the
three primary driver components applied to (3) stepper motors.

The attached device indexes are 0-indexed - meaning the first connected device is index 0, the second
is index 1, the third is index 2 and so forth. Here the initialize step is encased in a For Loop, indexed
by an array of device indexes 0 through 2. Therefore the first step creates (3) separate references, 1
for each initialized motor.

The second step permits the User to send (3) independent commands to each of the referenced
motors, with a 500ms delay imposed. All three responses are retrieved and sent to (3) independent
indicators on the front panel.

Lastly, all three references are closed.

12

2

Kod Integrations

LLC

To see how this VI works:

1. go to the “dmx_applications.lvproj” project and launch the VI “01_issue_raw_command_string
(multi).vi” beneath the “multiple_units” folder.

2. Enter 3 separate ASCII commands in the available “command (raw)” fields for each of the
motors

3. RUN the VI

4. Note the outputs for each motor

Note in this particular example, the second step (issue raw commands) is wrapped in a case structure,

displaying the TRUE case. As mentioned above, the three motors receive their commands

sequentially. Have a look the FALSE case, illustrated below:

command (raw) [motor at index 0]@
command (raw) [motor at index 1]@

command (raw) [motor at index Z]IE
@ 2
-t O SCMD S
2
device_indexes [N i) |8 lscro= N
0] 8
=t O -
f T}
error in (no error) N '_"[B @
= = - =
(1) Motor Initialization |(2) Issue Raw Commands| (3) Motor Termination
o .7 @]

4 False Vt

(1) Motor Initialization

In order to establish communication with an attached DMX series motor, that motor must FIRST be initialized, resulting in a numeric
‘reference’ being generated that is used to uniquely identify that motor and ONLY that motor. In this case, (3) DMX series motors are
initialized, each at indexes 0, 1 and 2 respectively. Contained in its own For Loop, this demonstrates the ability to output each motor's
reference in an array of references. One might include this in an "initialize” case of a State Machine.

(2) Issue Raw Commands

Once active references have been established for the DMX series motors, one can begin active communication with each in whichever
manner deems appropriate for the application at hand. The driver offers a number of options for communications; this example
demonstrates the use of issuing a direct (raw) ASCIl commands as outlined in the ASCII Language Specification section of the DMX
reference manual supplied by Arcus Technologies.

The above example demonstrates two methods for simultanous communication with the initialized, referenced motors. The first (when the
wired boolean to the above Case Structure is False), demonstrates virtually simultaneous communications with all three motors. The second
(when the wired boolean to the above Case Structure is True), demonstrates sequential communications with an imposed 500ms loop delay.

(3) Motor Termination

This actively terminates the connection references made to each motor. If this the reference to the active devices have not been properly
terminated, errors will likely occur if re-initialization is attempted (possibly requiring a full power cycle on the device itself). It is a wise idea
to ensure any applications are capable of terminating all active references appropriately.

Figure 12, 01_issue_raw_command_string (multi).vi block diagram
(simultaneous commands)

¥ response (raw) [motor at index 0]
response (raw) [motor at index 1]
¥ibcl|response (raw) [motor at index 2]

error out

{peat]

This case demonstrates an approach to simultaneously send independent commands to all three

motors.

13

2

Kod Integrations

LLC

Now for a more realistic design approach. Take a look at the VI “02_issue_commands_on_demand
(multi).vi”:

Front Panel:

e i | 5) 5 5 5 6 5 5 5 5 e e

Figure 13, 02_issue_commands_on_demand (multi).vi front panel

14

2

Kod Integrations

LLC

Block Diagram:
1 [0] "issue_cmd": Value Change vpf
1S 3, : ge v
j
motor_1 [TEH
motor 2508 £
motor_3[TEH
command motor_response_1 (raw)
4 N
parameters (opt)
[abc)
€
N or
device_indexes command (raw) (7]
abe
issue_cmd E‘-':
(1) Motor Initialization m (3) Motor Termination
o J o
Tab Control m (2) Commands on Demand

Analogous in behavior to the second example in section 3 above, the User first RUNs this VI and

(1) Motor Initialization

In order to establish communication with an attached DMX series motor, that motor must FIRST be initialized, resulting in a numeric 'reference’ being generated that is used to uniquely
identify that motor and ONLY that motor. The Device Index defaults to "0" - which is the correct value if only one DMX device is currently connected to the controlling PC. This input
becomes more relevant when dealing with multiple attached devices.

(2) Commands On Demand

Contrary to previous examples where only one command would execute in a single session (where a session is defined by (1) motor initialization, (2) motor command(s) issued and (3)
motor termination), this example enters a WHILE loop with a contained Event Structure. This model permits the user to issue commands 'on demand' by entering the desired command on
the front panel and clicking "ISSUE COMMAND" to send said command to the initialized DMX device.

As seen in the above code snippet, clicking the "ISSUE COMMAND" button invokes the "issue_cmd" case (triggered by a Value Change event on the "issue_cmd" button control). Similarly,
clicking the EXIT button invokes the "exit" case (triggered by a Value Change event on the "exit" button control).

Please refer to the instructions on the Front Panel that detail the usage of all three input controls wired to the send_receive_cmd.vi.

(3) Motor Termination
This actively terminates the connection reference made to the motor. If this the reference to the active device has not been properly terminated, errors will likely occur if re-initialization is

attempted (possibly requiring a full power cycle on the device itself). It is a wise idea to ensure any applications are capable of terminating all active references appropriately.

Figure 14, 02_issue_commands_on_demand (multi).vi block diagram

error out

proceeds to send commands on demand. However, in this case, just a single command is delivered to
motors of the Users choosing. For example (as illustrated in the front panel screenshot above), the
use can issue a Jog command (J+) to all three motors by checking the checkboxes for each motor and
clicking the ISSUE COMMAND button.

To see how this VI works:

4.1

oW

(multi).vi” beneath the “multiple_units” folder.
RUN the VI

Choose the motors to that are to receive the command
Click ISSUE COMMAND

Note the outputs for each motor

Motor Identification

go to the “dmx_applications.lvproj” project and launch the VI “02_issue_commands_on_demand

Enter an ASCII commands in the available “command (raw)” field beneath the OPTION 1 tab

15

%

Kod Integrations

LLC

When dealing with multiple motors, it is not intuitive as to which of these motors will be assigned to
which index - making it difficult when programmatically identifying and targeting specific motors.
That said, for more sophisticated applications, a mechanism must be in place to identify a motor by
both its index and its name (referred to as device ID in this document). Once set, a motors name/ID
will never change. However, its index can and likely will depending on the configuration of the
application.

All motors received from Arcus technologies will likely be shipped with the same name (JSA0O or
JSAO01). Itis highly suggested to connect each motor independently and change their names to be
JSA00, JSAO01, JSAOZ, etc. Now you can imagine an initialization routine that is capable of (1)
identifying how many devices are attached to the controlling PC, (2) initializing all motors and (3)
retrieving their ID’s (names) and associating them to their references. Now, knowing the names of
each motor (and the function of each), they can be properly identified in the program, regardless of
their assigned index. Consider this alternative method for initialization and identification, having a
look at VI “03_initialization_and_identification.vi”:

Front Panel:

Initialization with Identification
As opposed to simply initializing motors based on index, this is an alternative approach to
motor initialization giving the user control over which motor reference belongs to which

‘named' motor.

dev_info (out)

[;? |0 |J lindex name/id reference
[|0 |] [|jsa00 |] [|30216 |}
lindex name/id reference
[|1 |] {| jsa01 |] [| 36016 |]
lindex name/id reference
[[2 |] [[jsa02 \] [|36032 |]

ErrorIn Error Out

status code status code

L 0 - 10

source source

- -~
- -
\ ¢ J

Figure 15, 03_initialization_and_identification.vi front panel

16

2
Kod Integrations

LLC

Block Diagram:
index dev_info (out)
name/id jmeHolE boe)
reference
(4) Associate
B L .
(1) Get # Motors D |(2) Retrieve Name| |(3) Retrieve Referencel
! 7
Error Out
[P=aE]

(1) Get # Motors
Using the "get_number_of_devices" VI included with the driver set, retrieve the total number of devices connected to the
PC. This number dictates how many times to run the corresponding For Loop for identifying each device.

(2) Retrieve Name
Retrieve the name of each attached device.

(3) Retrieve Reference
Initialize each motor, given its index and output a reference used for further communications

(4) Associate

Using a strict type def cluster, combine (for each motor) the motor's index, name and reference. Now, rather than simply
referring to a reference for further communications, one may 'identify' a reference from this list of identification
information by its corresponding motor's name.

Figure 16, 03_initialization_and_identification.vi block diagram

As an alternative, more thorough approach to initializing the attached motors, one may want to
consider using this utility VI supplied in the “dmx_applications.lvproj” project library. Not only does
this utility VI initialize all attached motors, but it outputs a complete list of associations where each
motor is identified by not just its reference (as in all past examples) but by its reference, its index and
its name. Now, this permits the developer that ability to make logical business decisions in
downstream code based on an unchanging, assigned device name and not just an index or reference.

17

